Density of C_{-4}-critical signed graphs

Zhouningxin Wang

IRIF, Université Paris Cité and Nankai University
(Joint work with Reza Naserasr and Lan-Anh Pham)

SCMS combinatorics seminar
12th Aug. 2022
(1) Introduction

- H-coloring of graphs
- Homomorphism of signed graphs
- (H, $)$-critical signed graphs
- Jaeger-Zhang conjecture and its bipartite analog
(2) Density of C_{-4}-critical signed graphs
- C_{-4}-critical signed graphs
- Application to the planarity
(3) Conclusion

H-coloring

- A homomorphism of a graph G to a graph H is a mapping from $V(G)$ to $V(H)$ such that the adjacency is preserved.
- If G admits a homomorphism to H, then we say G admits an H -coloring or G is H -colorable.

4-color theorem restated
Every planar graph admits a K_{4}-coloring.

$(2 k+1)$-coloring problem vs $C_{2 k+1}$-coloring problem

$T_{k}(G)$: the graph obtained from G by replacing each edge $u v$ with a path of length k.

Indicator construction Lemma [P. Hell and J. Nešetřil 1990]
A graph G is $(2 k+1)$-colorable if and only if $T_{2 k-1}(G)$ is
$C_{2 k+1}$-colorable.

- The $C_{2 k+1}$-coloring problem is NP-complete. [H.A. Maurer, J.H. Sudborough, E. Welzl 1981]

Can we make use of even cycles to capture $2 k$-coloring problem?

Signed graphs

- A signed graph is a graph $G=(V, E)$ together with an assignment $\sigma: E(G) \rightarrow\{+,-\}$, denoted by (G, σ).
- A switching at a vertex v is to switch the signs of all the edges incident to this vertex.
- We say $\left(G, \sigma^{\prime}\right)$ is switching equivalent to (G, σ) if it is obtained from (G, σ) by switching at some vertices (allowing repetition).
- The sign of a closed walk is the product of signs of all the edges of this walk.

Theorem [T. Zaslavsky 1982]

Signed graphs (G, σ) and (G, σ^{\prime}) are switching equivalent if and only if they have the same set of negative cycles.

Homomorphism of signed graphs

- A homomorphism of a signed graph (G, σ) to (H, π) is a mapping φ from $V(G)$ and $E(G)$ to $V(H)$ and $E(H)$, respectively, such that the adjacency, the incidence and the signs of closed walks are preserved. If there is one, we write $(G, \sigma) \rightarrow(H, \pi)$.
- A homomorphism is edge-sign preserving if it, furthermore, preserves the signs of the edges. If there is one, we write $(G, \sigma) \xrightarrow{\text { s.p. }}(H, \pi)$.

Proposition [R. Naserasr, É. Sopena, and T. Zaslavsky 2021]

$$
(G, \sigma) \rightarrow(H, \pi) \Leftrightarrow \exists \sigma^{\prime} \equiv \sigma,\left(G, \sigma^{\prime}\right) \xrightarrow{\text { s.p. }}(H, \pi) .
$$

No-homomorphism Lemma

There are four possible types of closed walks in signed graphs:

- type 00 is a closed walk which is positive and of even length,
- type 01 is a closed walk which is positive and of odd length,
- type 10 is a closed walk which is negative and of even length,
- type 11 is a closed walk which is negative and of odd length.

The length of a shortest nontrivial closed walk in (G, σ) of type $i j$, (ij $\in \mathbb{Z}_{2}^{2}$), is denoted by $g_{i j}(G, \sigma)$.

[^0]
k-coloring problem vs C_{-k}-coloring problem

$T_{k}(G, \sigma)$: a signed graph obtained from (G, σ) by replacing each edge $u v$ with a signed path of length k with sign $-\sigma(u v)$.

Lemma [R. Naserasr, L-A. Pham, and Z. Wang 2022]

A graph G is k-colorable if and only if $T_{k-2}(G,+)$ is C_{-k}-colorable.
In particular, the $2 k$-coloring problem of graphs is captured by the $C_{-2 k}$-coloring problem of signed bipartite graphs.

Special case when $k=4$
A graph G is 4-colorable if and only if $T_{2}(G,+)$ is C_{-4}-colorable.

Proof of $G \rightarrow K_{4} \Leftrightarrow T_{2}(G,+) \rightarrow C_{-4}$

Figure: $G \rightarrow K_{4} \Rightarrow T_{2}(G,+) \rightarrow C_{-4}$

- \Rightarrow : It suffices to show that $T_{2}\left(K_{4},+\right) \rightarrow C_{-4}$.
- \Leftarrow : Let $\varphi: T_{2}(G,+) \rightarrow C_{-4}$. This mapping preserves the bipartition.

Edge-sign preserving homomorphism to C_{-4}

Lemma [C. Charpentier, R. Naserasr, and E. Sopena 2020]
Given a signed bipartite graph (G, σ),

$$
(G, \sigma) \xrightarrow{\text { s.P. }} C_{-4} \Leftrightarrow\left(P_{3}, \pi\right) \nsubseteq(G, \sigma) .
$$

Figure: C_{-4} and its edge-sign preserving dual

NP-completeness of C_{-4}-coloring problem

- In order to map a signed bipartite graph (G, σ) to C_{-4}, it is necessary and sufficient to find an equivalent signature σ^{\prime} of σ where no positive edge is incident with a negative edge at each of its end.
- Deciding whether there exists an edge-sign preserving homomorphism to C_{-4} is in polynomial time but finding such an equivalent signature is hard.
- The C_{-4}-coloring problem is NP-complete. [R. C. Brewster, F. Foucaud, P. Hell and R. Naserasr 2017]

k-critical and H -critical

- A graph is k-critical if it is k-chromatic but any proper graph of it is $(k-1)$-colorable.
- A graph is H -critical if it is not H -colorable but any proper graph of it is H -colorable. [P. A. Catlin 1988]
One of the most popular questions of H-critical graphs on n vertices is to find the lower bound for the number of edges as a function of n.
- Any C_{3}-critical graph on n vertices has at least $\frac{5 n-2}{3}$ edges; [A. Kostochka and M. Yancey 2014]
- Any C_{5}-critical graph on n vertices has at least $\frac{5 n-2}{4}$ edges; [Z. Dvorak and L. Postle 2017]
- Any C_{7}-critical graph on n vertices has at least $\frac{17 n-2}{15}$ edges. [L. Postle and E. Smith-Roberge 2022]

(H, π)-critical signed graph

Definition [R. Naserasr, L-A. Pham, and Z. Wang 2022]

A signed graph (G, σ) is (H, π)-critical if the following hold:

- $g_{i j}(G, \sigma) \geq g_{i j}(H, \pi)$, for $i j \in \mathbb{Z}_{2}^{2}$;
- $(G, \sigma) \nrightarrow(H, \pi)$;
- $\left(G^{\prime}, \sigma\right) \rightarrow(H, \pi)$ for any proper subgraph $\left(G^{\prime}, \sigma\right) \subset(G, \sigma)$.

We observe that:

- A graph G is k-critical $\Leftrightarrow(G,+)$ is $\left(K_{k-1},+\right)$-critical.
- By No-homomorphism Lemma, the first condition eliminates trivial cases.

C_{-4}-critical signed graph

A signed graph (G, σ) is C_{-4}-critical if the following hold:

- (G, σ) is bipartite and of negative-girth at least 4;
- $(G, \sigma) \nrightarrow C_{-4}$;
- $\left(G^{\prime}, \sigma\right) \rightarrow C_{-4}$ for any proper subgraph $\left(G^{\prime}, \sigma\right) \subset(G, \sigma)$.

Figure: \hat{W}

Figure: 「

Jaeger-Zhang Conjecture

Jaeger-Zhang Conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth at least $4 k+1$ admits a homomorphism to $C_{2 k+1}$.

- $k=1$: Grötzsch's theorem;
- $k=2$: verified for odd-girth 11 [Z. Dvořák and L. Postle 2017; D. Cranston and J. Li 2020];
- $k=3$: verified for odd-girth 17 [D. Cranston and J. Li 2020; L. Postle and E. Smith-Roberge 2022];
- $k \geq 4$:
- verified for odd-girth $8 k-3$ [X. Zhu 2001];
- verified for odd-girth $\frac{20 k-2}{3}$ [O.V. Borodin, S.-J. Kim, A.V. Kostochka and D.B. West 2002];
- verified for odd-girth $6 k+1$ [L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013].

Signed bipartite analog of Jaeger-Zhang Conjecture

Signed bipartite analog of Jaeger-Zhang Conjecture [R. Naserasr, E. Rollová, É. Sopena 2015]

Every signed bipartite planar graph of negative-girth at least $f(k)$ admits a homomorphism to $C_{-2 k}$.

- $k=2$: 8 is the best negative-girth condition [R. Naserasr, L-A. Pham, and Z. Wang 2022];
- $k=3,4$: verified for negative-girth 14 and 20 [J. Li, Y. Shi, Z. Wang and C. Wei 2022+];
- $k \geq 5$:
- verified for negative-girth $8 k-2$ [C. Charpentier, R. Naserasr, and E. Sopena 2020];
- verified for negative-girth $6 k-2$ [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+].

(1) Introduction

- H-coloring of graphs
- Homomorphism of signed graphs
- (H, π)-critical signed graphs
- Jaeger-Zhang conjecture and its bipartite analog
(2) Density of C_{-4}-critical signed graphs
- C_{-4}-critical signed graphs
- Application to the planarity
(3) Conclusion

Density of C_{-4}-critical signed graphs

Theorem [R. Naserasr, L-A. Pham, and Z. Wang 2022]
If \hat{G} is a C_{-4}-critical signed graph which is not isomorphic to \hat{W}, then

$$
e(\hat{G}) \geq \frac{4 v(\hat{G})}{3}
$$

Figure: \hat{W}

Figure: 「

Potential method

The potential of a signed graph \hat{G} is defined to be

$$
p(\hat{G})=4 v(\hat{G})-3 e(\hat{G})
$$

Theorem [R. Naserasr, L-A. Pham, and Z. Wang 2022]
If \hat{G} is C_{-4}-critical and $\hat{G} \neq \hat{W}$, then $p(\hat{G}) \leq 0$.
We will estimate the potentials of some subgraphs of the minimum counterexample and list some forbidden configurations in it.

Potential method

Let $\hat{G}=(G, \sigma)$ be the minimum counterexample with respect to $v(\hat{G})+e(\hat{G})$.

- \hat{G} is a C_{-4}-critical signed graph which is not isomorphic to \hat{W} and it satisfies $p(\hat{G}) \geq 1$;
- For any C_{-4}-critical signed graph \hat{H} with $\hat{H} \neq \hat{W}$ satisfying that $v(\hat{H})<v(\hat{G}), p(\hat{H}) \leq 0$.

Observations:

- \hat{G} is 2 -connected.
- There must exist a 2 -vertex in \hat{G}.
- There is no 3 -thread in \hat{G}.

Key Lemma

$P_{2}(\hat{H})$: a graph obtained from \hat{H} by adding a vertex v and joining it with two vertices in \hat{H} (with any signature).

Lemma (Potential of subgraphs)
Let $\hat{G}=(G, \sigma)$ be a minimum counterexample and let \hat{H} be a subgraph of \hat{G}. Then
(1) $p(\hat{H}) \geq 1$ if $\hat{G}=\hat{H}$;
(2) $p(\hat{H}) \geq 3$ if $\hat{G}=P_{2}(\hat{H})$;
(3) $p(\hat{H}) \geq 4$ otherwise.

Sketch of the proof

- Suppose to the contrary that \hat{G} contains a proper subgraph \hat{H} which does not satisfy $\hat{G}=P_{2}(\hat{H})$, and satisfies $p(\hat{H}) \leq 3$. We take the maximum such \hat{H}.
- Note that \hat{H} is a proper induced subgraph of order at least 5 . Let φ be a mapping of \hat{H} to C_{-4}.

Sketch of the proof

- Define \hat{G}_{1} to be a signed (multi)graph obtained from \hat{G} by first identifying vertices of \hat{H} which are mapped to a same vertex of C_{-4} under φ and identifying the parallel edges of the same sign. We conclude that $\hat{G}_{1} \nrightarrow C_{-4}$.
- Two possibilities: Either \hat{G}_{1} contains a C_{-2}, or \hat{G}_{1} contains a C_{-4}-critical subgraph \hat{G}_{2}.

Sketch of the proof

- Case 1: \hat{G}_{1} contains a C_{-2}. Then by computing $p\left(\hat{H}+P_{-2}\right)$ and using the maximality of \hat{H}, we obtain the contradiction.
- Case 2: \hat{G}_{1} contains a C_{-4}-critical subgraph \hat{G}_{2}. First of all, by the minimality of \hat{G}, we have $p\left(\hat{G}_{2}\right) \leq 0$. Then we define a signed graph \hat{G}_{3} (subgraph of \hat{G}) by combing \hat{G}_{2} and \hat{H} with some modifications. By the relation of $\hat{H} \subsetneq \hat{G}_{3} \subset \hat{G}$, it leads to a contradiction.

Forbidden configurations

Lemma

Two 4-cycles in the minimum counterexample \hat{G} cannot share one edge or two edges.

Lemma

Let $v v_{1} u$ be a 2 -thread in the minimum counterexample \hat{G}. Suppose that v is a 3 -vertex and let v_{2}, v_{3} be the other two neighbors of v. Then the path $v_{2} v v_{3}$ must be contained in a negative 4 -cycle in \hat{G}.

Forbidden configurations and discharging technique

Lemma

A vertex of degree 3 in the minimum counterexample \hat{G} does not have two neighbors of degree 2 .

Forbidden

Constructions of C_{-4}-critical signed graphs of density $\frac{4}{3}$

\tilde{G} : a signed graph obtained by replacing each edge of G by C_{-2}.
Lemma [R. Naserasr, L-A. Pham, and Z. Wang 2022]
A graph G is $(k+1)$-critical if and only if $T_{2 k-2}(\tilde{G})$ is $C_{-2 k}$-critical.
As odd cycles are the only 3 -critical graphs, $T_{2}\left(\tilde{C}_{2 k+1}\right)$, for each $k \geq 1$, is a C_{-4}-critical signed graph whose density is $\frac{4}{3}=\frac{8 k+4}{6 k+3}$.

Figure: $T_{2}\left(\tilde{C}_{3}\right)$

Figure: $T_{2}\left(\tilde{C}_{5}\right)$

Constructions of sparse C_{-4}-critical signed graphs

Let \hat{G}_{1} and \hat{G}_{2} be two C_{-4}-critical signed graphs.

- Assuming that there is a 2 -vertex u in \hat{G}_{1} with u_{1}, u_{2} being its neighbors and a 2-vertex v in \hat{G}_{2} with v_{1}, v_{2} being its neighbors, we build a signed graph $\mathcal{F}\left(\hat{G}_{1}, \hat{G}_{2}\right)$ from disjoint union of \hat{G}_{1} and \hat{G}_{2} by deleting u and v, and adding a positive edge $u_{1} v_{1}$ and a negative edge $u_{2} v_{2}$.

Figure: \hat{W}

Figure: \hat{W}

Figure: $\mathcal{F}(\hat{W}, \hat{W})$

Constructions of sparse C_{-4}-critical signed graphs

Analog of Hajós construction

- Assuming that there is a positive edge $x_{1} y_{1}$ in \hat{G}_{1} and a negative edge $x_{2} y_{2}$ in \hat{G}_{2}, we build a signed graph $\mathcal{H}\left(\hat{G}_{1}, \hat{G}_{2}\right)$ from disjoint union of \hat{G}_{1} and \hat{G}_{2} by deleting $x_{1} y_{1}, x_{2} y_{2}$ and identifying x_{1} with x_{2} and y_{1} with y_{2}.

Figure: 「

Figure: 「

Figure: $\mathcal{H}(\Gamma, \Gamma)$

Mapping signed bipartite planar graphs to C_{-4}

A signed graph (G, σ) is $2 k$-colorable if there exists a mapping c : $V(G) \rightarrow\{ \pm 1, \ldots, \pm k\}$ such that for each edge $u v$ of (G, σ), $c(u) \neq \sigma(u v) c(v)$.

It has been conjectured in [E. Máčajová, A. Raspaud, M. Škoviera 2016] that every signed planar simple graph is 4-colorable.

Theorem [F. Kardoš and J. Narboni 2021]
There exists a signed planar simple graph which is not 4-colorable.

Mapping signed bipartite planar graphs to C_{-4}

Theorem [F. Kardoš and J. Narboni 2021]

There exists a signed planar simple graph which is not 4-colorable.

Lemma [R. Naserasr, L-A. Pham, and Z. Wang 2022]
A signed graph (G, σ) is $2 k$-colorable if and only if $T_{2 k-2}(G, \sigma)$ is $C_{-2 k}$-colorable.

When $k=2$, there exists a signed graph $T_{2}(G, \sigma)$ which does not admit a homomorphism to C_{-4}.

Theorem [R. Naserasr, L-A. Pham, and Z. Wang 2022]
There exists a bipartite planar graph G of girth 6 with a signature σ such that $(G, \sigma) \nrightarrow C_{-4}$.

Mapping signed bipartite planar graphs to C_{-4}

- By Folding Lemma, starting from a signed bipartite planar graph whose shortest negative cycles are of length at least 8, we get a homomorphic image \hat{G} with a planar embedding where all faces are negative 8-cycles.
- Applying Euler's Formula on this graph, we have $|E(G)| \leq \frac{3(|V(G)|-2)}{4}$.

Theorem [R. Naserasr, L-A. Pham, and Z. Wang 2022]

Every signed bipartite planar graph of negative-girth at least 8 admits a homomorphism to C_{-4}. Moreover, the girth condition is the best possible.

(1) Introduction

- H-coloring of graphs
- Homomorphism of signed graphs
- (H, π)-critical signed graphs
- Jaeger-Zhang conjecture and its bipartite analog
(2) Density of C_{-4}-critical signed graphs
- C_{-4}-critical signed graphs
- Application to the planarity
(3) Conclusion

Relation with circular coloring of signed graphs

- Recently we have defined the notion of circular chromatic numbers of signed graphs. We prove that for any signed bipartite graph (G, σ),

$$
X_{c}(G, \sigma) \leq \frac{8}{3} \Leftrightarrow(G, \sigma) \rightarrow C_{-4} .
$$

- So our work can be restated as: Any $\frac{8}{3}$-critical signed bipartite graph on n vertices has at least $\frac{4 n}{3}$ edges except for \hat{W}.

Discussion

- We look for some strong sufficient conditions for signed bipartite planar graphs mapping to C_{-4}.

Conjecture

Let G be a bipartite planar graph of girth at least 6 . Let σ be a signature on G such that in (G, σ) all 6 -cycles are of a same sign. Then $(G, \sigma) \rightarrow C_{-4}$.

- If it is true, it implies the 4-color theorem by T_{2}-construction on a planar simple graph.

Discussion

- We determined that the best girth condition for mapping signed bipartite planar graphs to C_{-4} is 8 rather than 6 .

Question

What is the best negative-girth condition for signed bipartite planar graphs mapping to $C_{-2 k}$?

The end. Thank you!

[^0]: No-homomorphism Lemma [R. Naserasr, É. Sopena, and T. Zaslavsky 2021]
 If $(G, \sigma) \rightarrow(H, \pi)$, then $g_{i j}(G, \sigma) \geq g_{i j}(H, \pi)$ for $i j \in \mathbb{Z}_{2}^{2}$.

