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H-coloring of graphs

H-coloring

A homomorphism of a graph G to a graph H is a mapping
from V (G ) to V (H) such that the adjacency is preserved.

If G admits a homomorphism to H, then we say G admits an
H-coloring or G is H-colorable.

4-color theorem restated

Every planar graph admits a K4-coloring.
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H-coloring of graphs

(2k + 1)-coloring problem vs C2k+1-coloring problem

Tk(G ): the graph obtained from G by replacing each edge uv with
a path of length k .

Indicator construction Lemma [P. Hell and J. Nešeťril 1990]

A graph G is (2k + 1)-colorable if and only if T2k�1(G ) is
C2k+1-colorable.

The C2k+1-coloring problem is NP-complete. [H.A. Maurer,
J.H. Sudborough, E. Welzl 1981]

Can we make use of even cycles to capture 2k-coloring problem?
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Homomorphism of signed graphs

Signed graphs

A signed graph is a graph G = (V ,E ) together with an
assignment � : E (G ) ! {+,�}, denoted by (G ,�).

A switching at a vertex v is to switch the signs of all the
edges incident to this vertex.

We say (G ,�0) is switching equivalent to (G ,�) if it is
obtained from (G ,�) by switching at some vertices (allowing
repetition).

The sign of a closed walk is the product of signs of all the
edges of this walk.

Theorem [T. Zaslavsky 1982]

Signed graphs (G ,�) and (G ,�0) are switching equivalent if and
only if they have the same set of negative cycles.
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Homomorphism of signed graphs

Homomorphism of signed graphs

A homomorphism of a signed graph (G ,�) to (H,⇡) is a
mapping ' from V (G ) and E (G ) to V (H) and E (H),
respectively, such that the adjacency, the incidence and the
signs of closed walks are preserved. If there is one, we write
(G ,�) ! (H,⇡).
A homomorphism is edge-sign preserving if it, furthermore,
preserves the signs of the edges. If there is one, we write
(G ,�)

s.p.
�! (H,⇡).

Proposition [R. Naserasr, É. Sopena, and T. Zaslavsky 2021]

(G ,�) ! (H,⇡) , 9 �0
⌘ �, (G ,�0)

s.p.
�! (H,⇡).
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Homomorphism of signed graphs

No-homomorphism Lemma

There are four possible types of closed walks in signed graphs:

type 00 is a closed walk which is positive and of even length,

type 01 is a closed walk which is positive and of odd length,

type 10 is a closed walk which is negative and of even length,

type 11 is a closed walk which is negative and of odd length.

The length of a shortest nontrivial closed walk in (G ,�) of type ij ,
(ij 2 Z2

2
), is denoted by gij(G ,�).

No-homomorphism Lemma [R. Naserasr, É. Sopena, and T.
Zaslavsky 2021]

If (G ,�) ! (H,⇡), then gij(G ,�) � gij(H,⇡) for ij 2 Z2

2
.
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Homomorphism of signed graphs

k-coloring problem vs C�k-coloring problem

Tk(G ,�): a signed graph obtained from (G ,�) by replacing each
edge uv with a signed path of length k with sign ��(uv).

Lemma [R. Naserasr, L-A. Pham, and Z. Wang 2022]

A graph G is k-colorable if and only if Tk�2(G ,+) is C�k-colorable.

In particular, the 2k-coloring problem of graphs is captured by the
C�2k-coloring problem of signed bipartite graphs.

Special case when k = 4

A graph G is 4-colorable if and only if T2(G ,+) is C�4-colorable.
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Homomorphism of signed graphs

Proof of G ! K4 , T2(G ,+) ! C�4

Figure: G ! K4 ) T2(G ,+) ! C�4

): It su�ces to show that T2(K4,+) ! C�4.

(: Let ' : T2(G ,+) ! C�4. This mapping preserves the
bipartition.
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Homomorphism of signed graphs

Edge-sign preserving homomorphism to C�4

Lemma [C. Charpentier, R. Naserasr, and E. Sopena 2020]

Given a signed bipartite graph (G ,�),

(G ,�)
s.p.
�! C�4 , (P3,⇡) 6✓ (G ,�).

Sign Preserving

Figure: C�4 and its edge-sign preserving dual
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Homomorphism of signed graphs

NP-completeness of C�4-coloring problem

In order to map a signed bipartite graph (G ,�) to C�4, it is
necessary and su�cient to find an equivalent signature �0 of �
where no positive edge is incident with a negative edge at
each of its end.

Deciding whether there exists an edge-sign preserving
homomorphism to C�4 is in polynomial time but finding such
an equivalent signature is hard.

The C�4-coloring problem is NP-complete. [R. C. Brewster, F.
Foucaud, P. Hell and R. Naserasr 2017]
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(H,⇡)-critical signed graphs

k-critical and H-critical

A graph is k-critical if it is k-chromatic but any proper graph
of it is (k � 1)-colorable.

A graph is H-critical if it is not H-colorable but any proper
graph of it is H-colorable. [P. A. Catlin 1988]

One of the most popular questions of H-critical graphs on n

vertices is to find the lower bound for the number of edges as a
function of n.

Any C3-critical graph on n vertices has at least 5n�2

3
edges;

[A. Kostochka and M. Yancey 2014]

Any C5-critical graph on n vertices has at least 5n�2

4
edges;

[Z. Dvorak and L. Postle 2017]

Any C7-critical graph on n vertices has at least 17n�2

15
edges.

[L. Postle and E. Smith-Roberge 2022]
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(H,⇡)-critical signed graphs

(H , ⇡)-critical signed graph

Definition [R. Naserasr, L-A. Pham, and Z. Wang 2022]

A signed graph (G ,�) is (H,⇡)-critical if the following hold:

gij(G ,�) � gij(H,⇡), for ij 2 Z2

2
;

(G ,�) 6! (H,⇡);

(G 0,�) ! (H,⇡) for any proper subgraph (G 0,�) ⇢ (G ,�).

We observe that:

A graph G is k-critical , (G ,+) is (Kk�1,+)-critical.

By No-homomorphism Lemma, the first condition eliminates
trivial cases.
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(H,⇡)-critical signed graphs

C�4-critical signed graph

A signed graph (G ,�) is C�4-critical if the following hold:

(G ,�) is bipartite and of negative-girth at least 4;

(G ,�) 6! C�4;

(G 0,�) ! C�4 for any proper subgraph (G 0,�) ⇢ (G ,�).

Figure: Ŵ Figure: �
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Jaeger-Zhang conjecture and its bipartite analog

Jaeger-Zhang Conjecture

Jaeger-Zhang Conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth at least 4k + 1 admits a
homomorphism to C2k+1.

k = 1: Grötzsch’s theorem;

k = 2: verified for odd-girth 11 [Z. Dvǒrák and L. Postle 2017; D.
Cranston and J. Li 2020];

k = 3: verified for odd-girth 17 [D. Cranston and J. Li 2020; L.
Postle and E. Smith-Roberge 2022];

k � 4:

verified for odd-girth 8k � 3 [X. Zhu 2001];
verified for odd-girth 20k�2

3
[O.V. Borodin, S.-J. Kim, A.V.

Kostochka and D.B. West 2002];
verified for odd-girth 6k + 1 [L. M. Lovász, C. Thomassen, Y.
Wu and C. Q. Zhang 2013].
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Jaeger-Zhang conjecture and its bipartite analog

Signed bipartite analog of Jaeger-Zhang Conjecture

Signed bipartite analog of Jaeger-Zhang Conjecture [R. Naserasr,
E. Rollová, É. Sopena 2015]

Every signed bipartite planar graph of negative-girth at least f (k)
admits a homomorphism to C�2k .

k = 2: 8 is the best negative-girth condition [R. Naserasr, L-A.

Pham, and Z. Wang 2022];

k = 3, 4: verified for negative-girth 14 and 20 [J. Li, Y. Shi, Z.
Wang and C. Wei 2022+];

k � 5:

verified for negative-girth 8k � 2 [C. Charpentier, R. Naserasr,
and E. Sopena 2020];
verified for negative-girth 6k � 2 [J. Li, R. Naserasr, Z. Wang
and X. Zhu 2022+].
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C�4-critical signed graphs

Density of C�4-critical signed graphs

Theorem [R. Naserasr, L-A. Pham, and Z. Wang 2022]

If Ĝ is a C�4-critical signed graph which is not isomorphic to Ŵ ,
then

e(Ĝ ) �
4v(Ĝ )

3
.

Figure: Ŵ Figure: �
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C�4-critical signed graphs

Potential method

The potential of a signed graph Ĝ is defined to be

p(Ĝ ) = 4v(Ĝ )� 3e(Ĝ ).

Theorem [R. Naserasr, L-A. Pham, and Z. Wang 2022]

If Ĝ is C�4-critical and Ĝ 6= Ŵ , then p(Ĝ )  0.

We will estimate the potentials of some subgraphs of the minimum
counterexample and list some forbidden configurations in it.
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C�4-critical signed graphs

Potential method

Let Ĝ = (G ,�) be the minimum counterexample with respect to
v(Ĝ ) + e(Ĝ ).

Ĝ is a C�4-critical signed graph which is not isomorphic to Ŵ and it
satisfies p(Ĝ ) � 1;

For any C�4-critical signed graph Ĥ with Ĥ 6= Ŵ satisfying that
v(Ĥ) < v(Ĝ ), p(Ĥ)  0.

Observations:

Ĝ is 2-connected.

There must exist a 2-vertex in Ĝ .

There is no 3-thread in Ĝ .
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C�4-critical signed graphs

Key Lemma

P2(Ĥ): a graph obtained from Ĥ by adding a vertex v and joining it with
two vertices in Ĥ (with any signature).

Lemma (Potential of subgraphs)

Let Ĝ = (G ,�) be a minimum counterexample and let Ĥ be a subgraph
of Ĝ . Then

1 p(Ĥ) � 1 if Ĝ = Ĥ;

2 p(Ĥ) � 3 if Ĝ = P2(Ĥ);

3 p(Ĥ) � 4 otherwise.

21 / 37



Introduction Density of C�4-critical signed graphs Conclusion

C�4-critical signed graphs

Sketch of the proof

Suppose to the contrary that Ĝ contains a proper subgraph Ĥ

which does not satisfy Ĝ = P2(Ĥ), and satisfies p(Ĥ)  3.
We take the maximum such Ĥ.

Note that Ĥ is a proper induced subgraph of order at least 5.
Let ' be a mapping of Ĥ to C�4.
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C�4-critical signed graphs

Sketch of the proof

Define Ĝ1 to be a signed (multi)graph obtained from Ĝ by first
identifying vertices of Ĥ which are mapped to a same vertex of C�4

under ' and identifying the parallel edges of the same sign. We
conclude that Ĝ1 6! C�4.

Two possibilities: Either Ĝ1 contains a C�2, or Ĝ1 contains a
C�4-critical subgraph Ĝ2.
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C�4-critical signed graphs

Sketch of the proof

Case 1: Ĝ1 contains a C�2. Then by computing p(Ĥ + P�2) and
using the maximality of Ĥ, we obtain the contradiction.

Case 2: Ĝ1 contains a C�4-critical subgraph Ĝ2. First of all, by the
minimality of Ĝ , we have p(Ĝ2)  0. Then we define a signed graph
Ĝ3 (subgraph of Ĝ ) by combing Ĝ2 and Ĥ with some modifications.
By the relation of Ĥ ( Ĝ3 ⇢ Ĝ , it leads to a contradiction.
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C�4-critical signed graphs

Forbidden configurations

Lemma

Two 4-cycles in the minimum counterexample Ĝ cannot share one edge
or two edges.

Lemma

Let vv1u be a 2-thread in the minimum counterexample Ĝ . Suppose that
v is a 3-vertex and let v2, v3 be the other two neighbors of v . Then the
path v2vv3 must be contained in a negative 4-cycle in Ĝ .
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C�4-critical signed graphs

Forbidden configurations and discharging technique

Lemma

A vertex of degree 3 in the minimum counterexample Ĝ does not
have two neighbors of degree 2.
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C�4-critical signed graphs

Constructions of C�4-critical signed graphs of density
4
3

G̃ : a signed graph obtained by replacing each edge of G by C�2.

Lemma [R. Naserasr, L-A. Pham, and Z. Wang 2022]

A graph G is (k + 1)-critical if and only if T2k�2(G̃ ) is C�2k-critical.

As odd cycles are the only 3-critical graphs, T2(C̃2k+1), for each
k � 1, is a C�4-critical signed graph whose density is 4

3
= 8k+4

6k+3
.

Figure: T2(C̃3) Figure: T2(C̃5)
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C�4-critical signed graphs

Constructions of sparse C�4-critical signed graphs

Let Ĝ1 and Ĝ2 be two C�4-critical signed graphs.

Assuming that there is a 2-vertex u in Ĝ1 with u1, u2 being its
neighbors and a 2-vertex v in Ĝ2 with v1, v2 being its
neighbors, we build a signed graph F(Ĝ1, Ĝ2) from disjoint
union of Ĝ1 and Ĝ2 by deleting u and v , and adding a positive
edge u1v1 and a negative edge u2v2.

Figure: Ŵ Figure: Ŵ Figure: F(Ŵ , Ŵ )
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C�4-critical signed graphs

Constructions of sparse C�4-critical signed graphs

Analog of Hajós construction

Assuming that there is a positive edge x1y1 in Ĝ1 and a
negative edge x2y2 in Ĝ2, we build a signed graph H(Ĝ1, Ĝ2)
from disjoint union of Ĝ1 and Ĝ2 by deleting x1y1, x2y2 and
identifying x1 with x2 and y1 with y2.

Figure: � Figure: � Figure: H(�, �)
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Application to the planarity

Mapping signed bipartite planar graphs to C�4

A signed graph (G ,�) is 2k-colorable if there exists a mapping c :
V (G ) ! {±1, ...,±k} such that for each edge uv of (G ,�),
c(u) 6= �(uv)c(v).

It has been conjectured in [E. Máčajová, A. Raspaud, M. Škoviera
2016] that every signed planar simple graph is 4-colorable.

Theorem [F. Kardoš and J. Narboni 2021]

There exists a signed planar simple graph which is not 4-colorable.
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Application to the planarity

Mapping signed bipartite planar graphs to C�4

Theorem [F. Kardoš and J. Narboni 2021]

There exists a signed planar simple graph which is not 4-colorable.

Lemma [R. Naserasr, L-A. Pham, and Z. Wang 2022]

A signed graph (G ,�) is 2k-colorable if and only if T2k�2(G ,�) is
C�2k-colorable.

When k = 2, there exists a signed graph T2(G ,�) which does not admit a
homomorphism to C�4.

Theorem [R. Naserasr, L-A. Pham, and Z. Wang 2022]

There exists a bipartite planar graph G of girth 6 with a signature � such
that (G ,�) 6! C�4.
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Application to the planarity

Mapping signed bipartite planar graphs to C�4

By Folding Lemma, starting from a signed bipartite planar graph
whose shortest negative cycles are of length at least 8, we get a
homomorphic image Ĝ with a planar embedding where all faces are
negative 8-cycles.

Applying Euler’s Formula on this graph, we have
|E (G )|  3(|V (G)|�2)

4
.

Theorem [R. Naserasr, L-A. Pham, and Z. Wang 2022]

Every signed bipartite planar graph of negative-girth at least 8
admits a homomorphism to C�4. Moreover, the girth condition is
the best possible.
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Relation with circular coloring of signed graphs

Recently we have defined the notion of circular chromatic
numbers of signed graphs. We prove that for any signed
bipartite graph (G ,�),

Xc(G ,�) 
8

3
, (G ,�) ! C�4.

So our work can be restated as: Any 8

3
-critical signed bipartite

graph on n vertices has at least 4n

3
edges except for Ŵ .
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Discussion

We look for some strong su�cient conditions for signed
bipartite planar graphs mapping to C�4.

Conjecture

Let G be a bipartite planar graph of girth at least 6. Let � be a
signature on G such that in (G ,�) all 6-cycles are of a same sign.
Then (G ,�) ! C�4.

If it is true, it implies the 4-color theorem by T2-construction
on a planar simple graph.
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Discussion

We determined that the best girth condition for mapping
signed bipartite planar graphs to C�4 is 8 rather than 6.

Question

What is the best negative-girth condition for signed bipartite
planar graphs mapping to C�2k?
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The end. Thank you!
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